Splenomegaly & splenic rupture

Dr. Muhammad Shamim

FCPS (Pak), FACS (USA), FICS (USA). MHPE (NI & Eg)

Assistant Professor, Dept. of Surgery

College of Medicine, Salman bin Abdulaziz University

Email: surgeon.shamim@gmail.com

Web: surgeonshamim.com

Rupture of spleen

Etiology

Any trauma, esp. direct injury to left upper quadrant of abdomen from any angle.

A fall without direct trauma to trunk, esp. if spleen is

diseased.

Clinical features

Fatal type

- There is rapid blood loss, due to tearing of splenic vessels & complete avulsion of spleen from its pedicle.
- Patient succumbs rapidly within minutes, never recovering from initial shock.

Clinical features

Usual type

- 1. Initial shock
- 2. Recovery from shock
- 3. Signs of a ruptured spleen

General signs

- Increasing pallor
- Rising pulse rate
- Sighing (rapid & deep) respiration
- **Restlessness**

Local signs

- 1. Abdominal guarding, most in LUQ.
- 2. Local bruising & tenderness in LUQ.
- 3. Abdominal distension, commencing about 3 hours after accident.
- Kehr's sign → Pain referred to left shoulder. It is demonstrated 15 min after elevation of foot of bed.
- 5. Shifting dullness in flanks.
- 6. Balance's sign → A dull note in both flanks, but on right side it can be made to shift, whereas on left it is constant.
 - It indicates that there is blood in peritoneal cavity, but blood in neighborhood of lacerated spleen has coagulated.
- 7. Tenderness, & sometimes a soft swelling on per rectal examination.

Clinical features

Delayed type

- nitial signs of trauma & shock.
- Patient recovers from blow, within minutes to an hour or so.
- Serious intra-abdominal catastrophe are postponed for a variable period up to 15 days, or even more.

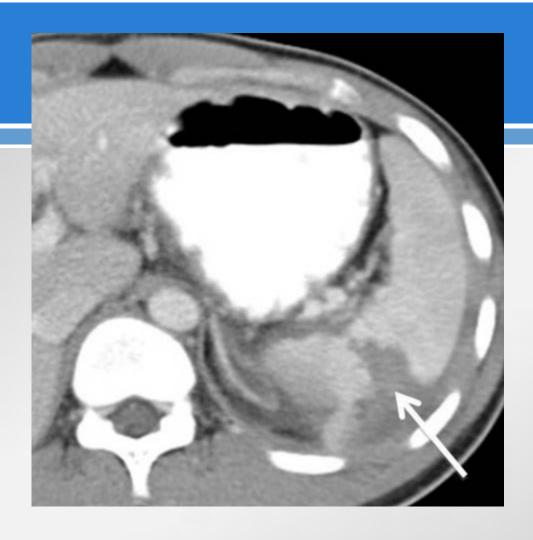
Diagnostic investigations

- 1. Obliteration of splenic outline.
- 2. Obliteration of psoas shadow.
- 3. Indentation of left side of gastric air bubble.
- 4. Fracture of one or more lower ribs of left side.
- Elevation of left side of diaphragm.
- 6. Free fluid between gas-filled intestinal coils.

50 Ultrasound

 Spleen is usually visualized, & a surrounding hematoma may suggest rupture.

ည CT scan


Enable an accurate diagnosis to be made.

Grade I spleen injury, subcapsular hemorrhage (arrow) less than 10% of surface area.

Grade II spleen injury, subcapsular haematoma involving 30%–40% of splenic surface area (arrow).

Grade IV spleen injury, laceration at upper pole (arrow).

Grade V spleen injury, shattered spleen with large-volume haemoperitoneum.

Grading for splenic injuries

∞ Grade I

- Hematoma: Subcapsular, nonexpanding, <10% surface area
- Laceration: Capsular tear, nonbleeding, <1cm parenchymal depth

Grade Ⅱ

- Hematoma: Subcapsular, nonexpanding, 10-50% surface area;
 Intraparenchymal, <2cm diameter, nonexpanding
- Laceration: Capsular tear, active bleeding, 1-3cm parenchymal depth

∞ Grade III

- Hematoma: Subcapsular, >50% surface area or expanding; Ruptured subcapsular hematoma with active bleeding; Intraparenchymal, >2cm diameter or expanding
- Laceration: >3cm parenchymal depth

Grade IV

- Laceration: Involving segmental or hilar vessels producing devascularization
- Grade V
 - Laceration: Shattered spleen
 - Vascular: Hilar vascular injury that devascularizes spleen

ATLS guidelines

∞ A, B, C, D, E

Conservative management

- Careful observation in an ICU setup is undertaken, if
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 - there is hemodynamic stability.
 - CT scan confirms absence of hilar involvement or massive disruption of spleen.

Surgery

- mmediate laparotomy is indicated, if
 - There is evidence of continuing blood loss despite adequate resuscitation.
 - There is strong suspicion of injury to other intraabdominal viscera.
- Because of the problems associated with splenectomy, splenic preservation should be undertaken where possible, esp. in children where auto-transplantation should be performed if spleen could not be saved.

Surgery

Options available are;

- 1. Suturing of the injury, with or without application of hemostatic agents.
- Partial segmental resection (upper & lower pole injuries).
- 3. Splenectomy, with or without auto-transplantation.

- 1. Blood transfusion should be given, as required.
- 2. Long-term antibiotic protection & pneumococcal vaccine should be given, in cases of splenectomy.

Splenomegaly

Etiology of splenomegaly

A. Reactive hyperplasia

1. Bacterial infections

- 1. Tuberculosis
- 2. Infective endocarditis
- 3. Typhoid & paratyphoid
- 4. Typhus (rickettsia)
- 5. Anthrax
- 6. Septicemia
- 7. Splenic abscess
- 8. Syphilis
- Weil's disease (leptospirosis)
- 10. Psittacosis
- 11. Brucellosis

2. Viral infections

- Infectious mononucleosis (EBV)
- 2. Cytomegalo virus infection

3. Parasitic infections

- 1. Malaria & tropical splenomegaly
- 2. Toxoplasmosis
- 3. Schistosomiasis
- 4. Trypanosomiasis
- 5. Kala-azar (leishmaniasis)
- 6. Hydatid cyst

4. Hemolytic diseases

- 1. Hereditary spherocytosis
- 2. Sickle-cell disease
- 3. Thalassemia
- 4. Autoimmune hemolytic anemia
- 5. Erythroblastosis fetalis

5. Connective tissue diseases

- 1. Systemic lupus erythematosus (SLE)
- 2. Rheumatoid arthritis
- 3. Felty's syndrome (rheumatoid arthritis, leukopenia)
- 4. Still's disease (systemic-onset juvenile idiopathic arthritis)

B. Congestion

- 1. Portal hypertension
- 2. Congestive heart failure

c. Nonparasitic cysts

- 1. Congenital
- 2. Acquired

D. Infiltrative diseases

- 1. Non neoplastic
 - 1. Gaucher's dis (glucocerebroside)
 - 2. Amyloidosis
 - 3. Sarcoidosis

2. Neoplastic

- 1. Acute lymphocytic leukemia
- 2. Chronic lymphocytic leukemia
- 3. Chronic granulocytic leukemia
- 4. Hodgkin's lymphoma
- 5. Non-Hodgkin lymphoma
- 6. Polycythemia vera
- 7. Myelofibrosis
- 8. Angioma
- 9. Primary fibrosarcoma

Idiopathic thrombocytopenic purpura (ITP)

Etiology

- Formation of antibodies against patient's own platelets, resulting in low platelet count.
 - (Normal platelet count is 250-400 x 10⁹/litre).

Clinical Features

- It normally affect females between 15-50 years of age.
- Purpuric patches (ecchymoses) in skin & mucosa.
- Tendency to spontaneous bleeding from mucosa (eg epistaxis),
 & menorrhagia.
- Prolonged bleeding of minor wounds.
- Urinary & gastrointestinal hemorrhage & hemarthrosis (rare).
- Intracranial hemorrhage (rare but fatal).
- **50** Tourniquet test → Positive.
- Splenomegaly → Present in only 25% of cases, & gross splenomegaly suggests that the diagnosis is not ITP

Investigations

- **∞** Bleeding time → Increased.
- **∞** Clotting & prothrombin times → Normal.
- ∞ Platelet count → Decreased (usually < 60 x 10 9 /litre).
- **Bone marrow biopsy** → Plentiful megakaryocytes.

- In children, the disease regresses spontaneously in 75 % cases after one attack.
- Short courses of corticosteroids are usually followed by recovery, in both adult & child.
- Splenectomy is indicated, if
 - A patient has 2 relapses on steroid therapy.
 - Platelet count remains low for more than 6-9 months.
- In acute cases, with severe bleeding → Transfusion of fresh blood or platelet concentrates.

Hemolytic anemias

Hemolytic anemias amenable to splenectomy are:

- Hereditary spherocytosis
- Acquired autoimmune hemolytic anaemia
- 50 Thalassaemia (Cooley's anemia)
- Sickle cell disease

Hereditary spherocytosis

- 50 This is an autosomal dominant hereditary disorder,
- characterized by the presence of spherocytic red cells,
- membrane to sodium.

Clinical Features

- **It usually presents in childhood, but may be delayed until later life.**
- Paler (anemia).
- Lassitude & undue fatigue.
- Biliary colics & pigment gallstones.
 - Jaundice (mild, intermittent).
- Splenomegaly.
- **Solution** Chronic leg ulcers.
- In certain families, there is severe crises of RBCs destruction;
 - Erythrocyte count may fall from 4.5 x 10⁶ to 1.5 x 10⁶ in less than a week.
 - There will be pyrexia, abdominal pain, nausea, vomiting & extreme pallor, followed by increased jaundice.
 - These crises may be precipitated by acute infection.

Investigations

- Fragility test → Increased fragility of RBCs (0.6% saline).
- Reticulocyte count → Increased.
- **№ Fecal urobilinogen** → Increased.
- Radioactive chromium scan →
 - Patient's own red cells labeled with 51Cr, followed by daily scanning over the spleen.
 - show the degree of red cell sequestration by the spleen.
- Ultrasonography → To determine the presence or absence of gallstones.

- **Splenectomy**
- In juvenile cases, the optimum time is about 7 years of age, before gallstones formed & subsequent vulnerability to infection is reduced.

The Endi